FreshRSS

🔒
❌ About FreshRSS
There are new articles available, click to refresh the page.
Before yesterday美团技术团队

美团智能客服核心技术与实践

September 30th 2021 at 00:00
客服是在用户服务体验不完美的情况下,尽可能帮助体验顺畅进行下去的一种解决办法,是问题发生后的一种兜底方案。而智能客服能让大部分简单的问题得以快速自助解决,让复杂问题有机会被人工高效解决。在用户服务的全旅程中,美团平台/搜索与NLP部提供了问题推荐、问题理解、对话管理、答案供给、话术推荐和会话摘要等六大智能客服核心能力,以期达到低成本、高效率、高质量地与用户进行沟通的目的。本文主要介绍了美团智能客服核心技术以及在美团的实践,希望能给从事相关工作的同学带来一些启发或者帮助。

如何优雅地记录操作日志?

September 16th 2021 at 00:00
操作日志广泛存在于各个B端和一些C端系统中,比如:客服可以根据工单的操作日志快速知道哪些人对这个工单做了哪些操作,进而快速地定位问题。操作日志和系统日志不一样,操作日志必须要做到简单易懂。所以如何让操作日志不和业务逻辑耦合,如何让操作日志的内容易于理解,让操作日志的接入更加简单?上面这些都是本文要回答的问题,主要围绕着如何“优雅”地记录操作日志展开描述。

新一代CTR预测服务的GPU优化实践

September 9th 2021 at 00:00
CTR模型在互联网的搜索、推荐、广告等场景有着广泛的应用。近年来,随着深度神经网络的引入,CTR模型的推理对硬件算力的要求逐渐增加。本文介绍了美团在CTR模型优化的实践。通过分析模型结构特点,结合GPU硬件架构,我们设计了一系列流程对模型进行定制优化,达到了降低延迟、提高吞吐、节省成本的目标。

美团商品知识图谱的构建及应用

September 2nd 2021 at 00:00
商品知识图谱作为新零售行业数字化的基石,提供了围绕商品的精准结构化理解,对业务应用起到了至关重要的作用。相比于美团大脑中原有的围绕商户的图谱而言,商品图谱需应对更加分散、复杂、海量的数据和业务场景,且面临着信息来源质量低、数据维度多、依赖常识以及专业知识等挑战。本文将围绕零售商品知识图谱,介绍美团在商品层级建设、属性体系建设、图谱建设人效提升等方向的探索,希望对大家有所帮助或启发。

Spock单元测试框架介绍以及在美团优选的实践

August 6th 2021 at 00:00
Spock是一款国外优秀的测试框架,基于BDD(行为驱动开发)思想实现,功能非常强大。Spock结合Groovy动态语言的特点,提供了各种标签,并采用简单、通用、结构化的描述语言,让编写测试代码更加简洁、高效。目前,美团优选物流绝大部分后端服务已经采用了Spock作为测试框架,在开发效率、可读性和维护性方面均取得了不错的收益。

ACL 2021 | 一文详解美团技术团队7篇精选论文

August 5th 2021 at 00:00
ACL是计算语言学和自然语言处理领域最重要的顶级国际会议,该会议由国际计算语言学协会组织,每年举办一次。据谷歌学术计算语言学刊物指标显示,ACL影响力位列第一,是CCF-A类推荐会议。美团技术团队共有7篇论文(其中6篇长文,1篇短文)被ACL 2021接收,这些论文是美团技术团队在事件抽取、实体识别、意图识别、新槽位发现、无监督句子表示、语义解析、文档检索等自然语言处理任务上的一些前沿探索及应用。

美团App页面视图可测性改造实践

一次编写多处运行的动态化容器技术给研发效率带来了极大的提升,但对于依旧需要多端验证的测试流程来说,在效率层面却面临着极大的挑战。本文围绕动态化容器中的动态布局技术,阐述了如何通过可测性改造来帮助达成提升测试效率的目标。希望可以给同样需要测试动态化页面的同学们带来一些启发和帮助。

美团终端消息投递服务Pike的演进之路

Pike 2.0致力于为美团提供一套易接入、高可靠、高性能的双向消息投递服务。本文首先从系统架构升级、工作模式升级、长稳保活机制升级等方面介绍了Pike2.0的技术演进,然后介绍了Pike 2.0在直播、游戏等新业务场景下的特性支持。希望本文能给对消息投递服务感兴趣或者从事相关工作的读者一些帮助和启发。

本地生活综合性需求图谱的构建及应用

本地生活综合性需求图谱(GENE: lifestyle GEneral NEeds net),是从用户需求视角出发,深入挖掘本地生活场景下用户多样化的需求,并将其与多行业、多类型的供给形成关联的知识图谱,旨在提升平台供需匹配效率,助力业务增长。本文介绍了本地生活综合性需求图谱的背景、体系设计和涉及的算法实践,并展示了在美团多个业务线的应用落地,希望给大家带来一些帮助或启发。

多业务建模在美团搜索排序中的实践

美团搜索排序是一个典型的多业务混合排序建模问题,这种多业务场景搜索存在很多挑战,本文聚焦于到店商家多业务场景,进行了多业务排序建模优化工作。希望能对从事相关工作的同学有所启发或者帮助。

常识性概念图谱建设以及在美团场景中的应用

常识性概念图谱,是围绕常识性概念建立的实体以及实体之间的关系,同时侧重美团的场景构建的一类知识图谱。本文介绍了美团常识性概念图谱构建的Schema,图谱建设中遇到的挑战以及建设过程中的算法实践,最后介绍了一些目前常识性概念图谱在业务上的应用。

美团外卖广告智能算力的探索与实践

在深度学习时代,算力的需求和消耗日益增长,如何降低算力成本,提高算力效率,逐渐成为一个重要的新课题。智能算力旨在对算力进行精细化和个性化分配,实现最优化资源利用。本文主要分享美团外卖广告在智能算力探索和实践过程中积累的经验,希望能给大家带来一些帮助或者启发。

美团民宿跨端复用框架设计与实践

从 PC 时代、移动时代到万物互联的 IoT 时代,伴随终端设备的日趋多样化,跨端复用的种子自此落地,开始生根发芽。从业务角度出发,跨端技术演进更多是在不同阶段、不同时间段内业务效率上的选择,美团民宿业务在大前端融合的浪潮中逐浪前行,不断探索和迭代抉择,为解决业务痛点而孵化出跨端框架技术,在这个过程中,我们进行了很多的探索和实践的思考,希望能给大家一些启发。本文主要分享美团民宿在跨端复用技术探索和业务实践过程中的经验。

SIGIR 2021 | 广告系统位置偏差的CTR模型优化方案

美团到店广告平台算法团队基于多年来在广告领域上积累的经验,一直在数据偏差等业界挑战性问题不断进行深入优化与算法创新。在之前分享的《KDD Cup 2020 Debiasing比赛冠军技术方案与广告业务应用》一文[4]中,团队分享了在KDD Cup比赛中取得冠军的选择性偏差以及流行度偏差的解决方案,同时也分享了在广告业务上偏差优化的技术框架。 本文基于这一技术框架进行继续介绍,聚焦于位置偏差问题的最新进展,并详细地介绍团队在美团广告取得显著业务效果的位置偏差CTR模型优化方案,以该方案为基础形成的论文《Deep Position-wise Interaction Network for CTR Prediction》也被国际顶级会议SIGIR 2021录用。

CVPR 2021 | 基于Transformer的端到端视频实例分割方法

实例分割是计算机视觉中的基础问题之一。虽然静态图像中的实例分割已经有很多的研究,对视频的实例分割(Video Instance Segmentation,简称VIS)的研究却相对较少。而真实世界中的摄像头所接收的,无论自动驾驶背景下车辆实时感知的周围场景,还是网络媒体中的长短视频,大多数为视频流的信息而非纯图像信息。因而研究对视频建模的模型有着十分重要的意义,本文系美团无人配送团队在CVPR 2021发表的一篇论文解读。

ACL 2021|美团提出基于对比学习的文本表示模型,效果相比BERT-flow提升8%

尽管基于BERT的模型在NLP诸多下游任务中取得了成功,直接从BERT导出的句向量表示往往被约束在一个很小的区域内,表现出很高的相似度,因而难以直接用于文本语义匹配。为解决BERT原生句子表示这种“坍缩”现象,美团NLP中心知识图谱团队提出了基于对比学习的句子表示迁移方法——ConSERT,通过在目标领域的无监督语料上Fine-tune,使模型生成的句子表示与下游任务的数据分布更加适配。在句子语义匹配(STS)任务的实验结果显示,同等设置下ConSERT相比此前的SOTA大幅提升了8%,并且在少样本场景下仍表现出较强的性能提升。

2021全国科技工作者日:致敬科技工作者

你因科技而精彩,科技因你而腾飞。

外卖商品的标准化建设与应用

外卖菜品命名个性化程度高,为运营分析、召回排序、后台管理等业务带来一定的困难。本文系外卖美食知识图谱系列的第二篇文章,介绍了外卖从零到一建设菜品标准化体系的过程及方案,涉及的主要技术包括NLP领域的实体抽取、文本匹配、关系分类,以及CV领域的图像匹配等。最后,通过标准名在外卖业务中的应用实践,验证了标准名体系建设的价值和意义。

美团外卖美食知识图谱的迭代及应用

菜品是外卖交易过程的核心要素,对菜品的理解也是实现外卖供需匹配的重点。今天我们将一次推送三篇文章,系统地介绍了美团外卖美食知识图谱的构建和应用。《美团外卖美食知识图谱的迭代及应用》会介绍外卖知识图谱的体系全貌,包括菜品类目、标准菜品、美食基础属性和美食业务主题属性。《外卖商品的标准化建设与应用》将重点介绍外卖菜品标准化建设思路、技术方案和业务应用。由于外卖的业务特点是搭配成单,而《外卖套餐搭配的探索和应用》一文会针对性地介绍外卖套餐搭配技术的迭代以及应用实践。希望对从事相关工作的同学能够带来一些启发或者帮助。
❌